Search results for "Atmospheric sounding"

showing 10 items of 10 documents

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

2014

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiesSoil Science02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPhysics::Geophysics14. Life underwaterComputers in Earth SciencesTime series021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingAtmospheric soundingValencia Anchor StationRadiometerGeologyInversion (meteorology)SMAP15. Life on landBrightness temperatureSoil waterEnvironmental scienceRadiometrySoil moisture retrievalELBARA[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSRemote Sensing of Environment
researchProduct

The 2009 Edition of the GEISA Spectroscopic Database

2011

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric Spectroscopic Information) is described in this paper. GEISA is a computer-accessible system comprising three independent sub-databases devoted, respectively, to: line parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031cm-1.The successful performances of the new …

010504 meteorology & atmospheric sciencesMeteorologyTélédétectionPhysique atomique et moléculaireMolecular spectroscopyInfrared atmospheric sounding interferometercomputer.software_genre01 natural sciencesLine parametersAtmospheric radiative transfer0103 physical sciences010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesRemote sensingWeb site[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]RadiationSpectroscopic database[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]DatabaseGEISAOptically activeAtmospheric aerosolsMolecular spectroscopyAtomic and Molecular Physics and Optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryOn boardSpectroscopie [électromagnétisme optique acoustique][ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryEarth's and planetary atmospheresEnvironmental scienceAtmospheric absorptionAtmospheric absorptionCross-sectionscomputer
researchProduct

Nonlinear statistical retrieval of surface emissivity from IASI data

2017

Emissivity is one of the most important parameters to improve the determination of the troposphere properties (thermodynamic properties, aerosols and trace gases concentration) and it is essential to estimate the radiative budget. With the second generation of infrared sounders, we can estimate emissivity spectra at high spectral resolution, which gives us a global view and long-term monitoring of continental surfaces. Statistically, this is an ill-posed retrieval problem, with as many output variables as inputs. We here propose nonlinear multi-output statistical regression based on kernel methods to estimate spectral emissivity given the radiances. Kernel methods can cope with high-dimensi…

0211 other engineering and technologies020206 networking & telecommunications02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometerLeast squaresKernel method13. Climate actionKernel (statistics)Linear regression0202 electrical engineering electronic engineering information engineeringEmissivityKernel regressionPhysics::Atmospheric and Oceanic Physics021101 geological & geomatics engineeringRemote sensingMathematics2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Consistency between GRUAN sondes, LBLRTM and IASI

2017

Abstract. Radiosonde soundings from the GCOS Reference Upper-Air Network (GRUAN) data record are shown to be consistent with Infrared Atmospheric Sounding Instrument (IASI)-measured radiances via LBLRTM (Line-By-Line Radiative Transfer Model) in the part of the spectrum that is mostly affected by water vapour absorption in the upper troposphere (from 700 hPa up). This result is key for climate data records, since GRUAN, IASI and LBLRTM constitute reference measurements or a reference radiative transfer model in each of their fields. This is specially the case for night-time radiosonde measurements. Although the sample size is small (16 cases), daytime GRUAN radiosonde measurements seem to h…

Atmospheric ScienceDaytime010504 meteorology & atmospheric sciencesMeteorology0211 other engineering and technologies02 engineering and technologyAtmospheric sciencesCollocation (remote sensing)01 natural scienceslaw.inventionTroposphereAtmospheric radiative transfer codeslawConsistency (statistics)Relative humiditylcsh:TA170-171Radiosondeos021101 geological & geomatics engineering0105 earth and related environmental sciencesAtmospheric soundinglcsh:TA715-787lcsh:Earthwork. FoundationsTransferencia radiativa en la atmosferalcsh:Environmental engineeringPerfil de humedadRadiosondeEnvironmental sciencePerfil de temperaturaSondeadores infrarrojos hiperespectrales
researchProduct

Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data

2009

This paper presents a revision, an update, and an extension of the generalized single-channel (SC) algorithm developed by Jimenez-Munoz and Sobrino (2003), which was particularized to the thermal-infrared (TIR) channel (band 6) located in the Landsat-5 Thematic Mapper (TM) sensor. The SC algorithm relies on the concept of atmospheric functions (AFs) which are dependent on atmospheric transmissivity and upwelling and downwelling atmospheric radiances. These AFs are fitted versus the atmospheric water vapor content for operational purposes. In this paper, we present updated fits using MODTRAN 4 radiative transfer code, and we also extend the application of the SC algorithm to the TIR channel …

Atmospheric sounding010504 meteorology & atmospheric sciencesMean squared errorMeteorologyMODTRAN0211 other engineering and technologies02 engineering and technologyAtmospheric modelAtmospheric temperature01 natural sciencesThematic MapperRadiative transferGeneral Earth and Planetary SciencesEnvironmental scienceElectrical and Electronic EngineeringAlgorithmWater vapor021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Comparison of Radiosonde and Remote Sensing Data to Evaluate Convective Forest Fire Risk: The Haines Index

2018

Haines Index (HI) has been associated with convective forest fires risk. Temperatures and humidities in low atmospheric levels are required to compute HI and usually, atmospheric sounding data are used for this purpose. However, spatial and temporal resolutions of these data are coarse and remote sensing data could improve them. Therefore, the aim of this work is to test remote sensing data from the Atmospheric Infrared Sounder (AIRS) instrument on board the EOS Aqua satellite, specifically the Level 2 V6 products (AIRX2RET and AIRS2RET), for this purpose. First, we validated the remote sensing data with radiosonde daytime and nighttime data located in the Iberian Peninsula in 2014. Signifi…

Atmospheric sounding021110 strategic defence & security studiesDaytime010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technology01 natural scienceslaw.inventionHaines IndexSea surface temperatureAtmosphere of EarthlawAtmospheric Infrared SounderRadiosondeEnvironmental scienceSatellite0105 earth and related environmental sciencesRemote sensingIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

2019

In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…

Computer scienceInfrared Atmospheric Sounding Interferometer (IASI)Spectral Transforms0211 other engineering and technologies02 engineering and technologyData_CODINGANDINFORMATIONTHEORYLossy compressionInfrared atmospheric sounding interferometer (IASI)Kernel MethodsElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringbusiness.industryDimensionality reductionLossy CompressionJPEG 2000Kernel methodsPattern recognitioncomputer.file_formatJoint Photographic Experts Group (JPEG) 2000RegressionUncompressed videoSpectral transformsKernel methodStatistically based retrievalJPEG 2000General Earth and Planetary SciencesLossy compressionArtificial intelligencebusinessStatistically Based RetrievalcomputerSmoothingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Statistical atmospheric parameter retrieval largely benefits from spatial-spectral image compression

2021

The infrared atmospheric sounding interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System. Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, the IASI collects rich spectral information to derive temperature and moisture profiles, among other relevant trace gases, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield…

MeteorologySatellites0211 other engineering and technologies02 engineering and technologyAtmospheric modelLossy compressionInfrared atmospheric sounding interferometerAtmospheric measurements0202 electrical engineering electronic engineering information engineeringTransform codingElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringRemote sensingTemperature measurementHyperspectral imagingImage coding020206 networking & telecommunicationsTransformsDepth soundingAtmospheric modelingDew point13. Climate actionCompression ratioGeneral Earth and Planetary SciencesEnvironmental science
researchProduct

Kernel-based retrieval of atmospheric profiles from IASI data

2011

This paper proposes the use of kernel ridge regression (KRR) to derive surface and atmospheric properties from hyperspectral infrared sounding spectra. We focus on the retrieval of temperature and humidity atmospheric profiles from Infrared Atmospheric Sounding Interferometer (MetOp-IASI) data, and provide confidence maps on the predictions. In addition, we propose a scheme for the identification of anomalies by supervised classification of discrepancies with the ECMWF estimates. For the retrieval, we observed that KRR clearly outperformed linear regression. Looking at the confidence maps, we observed that big discrepancies are mainly due to the presence of clouds and low emissivities in de…

Support vector machineKernel methodInfraredComputer scienceKernel (statistics)Hyperspectral imagingAtmospheric modelInfrared atmospheric sounding interferometerAtmospheric temperatureSpectral lineRemote sensing2011 IEEE International Geoscience and Remote Sensing Symposium
researchProduct